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Abstract
We solve the dynamics of large spherical minority games (MG) in the presence
of non-negligible time-dependent external contributions to the overall market
bid. The latter represent the actions of market regulators or other major natural
or political events that impact on the market. In contrast to non-spherical
MGs, the spherical formulation allows one to derive closed dynamical order
parameter equations in an explicit form and work out the market’s response to
such events fully analytically. We focus on a comparison between the response
to stationary versus oscillating market interventions, and reveal profound and
partially unexpected differences in terms of transition lines and the volatility.

PACS numbers: 02.50.Le, 87.23.Ge, 05.70.Ln, 64.60.Ht

1. Introduction

Minority games (MG) [1, 2] are simple mathematical models designed to elucidate and explain
the origin of the nontrivial macroscopic fluctuation phenomenology observed in real markets,
on the basis of the so-called inductive decision making by large numbers of interacting agents
[3]. Their great strength is that they can be solved analytically using methods from the statistical
mechanics of disordered systems, in particular by generating functional analysis techniques
[4–6]. We refer to the recent textbooks [7, 8] for historical backgrounds, the connection
between MGs and real markets, details on mathematical methods and full references. Now
that the standard MGs have been solved and understood satisfactorily, attention must turn to
generalizing the mathematical technology developed so as to apply to models that are more
realistic economically. In this paper, we try to contribute to this aim by analytically studying
the dynamical response of MG markets to non-negligible events in the outside world that
impact on the overall market bid (which in MGs is a proxy for the asset price). These events
could be accidental (e.g., natural disasters, changes in resource availability), political (e.g.,
election results, major management incompetence or corruption scandals) or interventions by
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market regulators. Such ingredients are incorporated easily into the fabric of MG-type models,
by simply adding to the overall market bid time-dependent external terms; the tricky stage is
to work out mathematically the consequences of such terms. The simplest case is that where
the external bid term is stationary. Here only minor modifications of the standard formalism
are required; see, e.g., [9] (using the replica method) or [10] (using generating functional
analysis). For non-stationary external bid contributions, in contrast, one is generally forced
to either resort to numerical simulations (see [10]) or turn to those generating functional
analysis versions that involve explicit representations of the overall bid process, as developed
for MGs with real market histories [11, 12]. In the latter studies only infinitesimal external bid
perturbations have been considered so far, in view of the complexity of the formalism. There
is, however, one special class of MG versions where adding time-dependent external bids does
not lead to serious mathematical complications: the spherical MGs as introduced in [13, 14].
We show in this paper that here it is still possible to derive fully explicit and exact equations
for time-dependent order parameters (correlation and response functions); time-dependent
external bids are found to be mathematically harmless, and one can even allow for (partial)
market impact correction as in [15]. We focus on comparing the long-time solution of these
equations for stationary external bids to those found for oscillating external bids. As expected,
these two cases are found to generate very different macroscopic consequences, in terms of
phase diagrams and the volatility. Some of these are intuitively clear, such as the profound
impact of oscillating market interventions on the volatility, but some are not at all intuitive,
such as the independence of the phase diagram in the case of oscillating external bids on the
amplitude of the intervention (in contrast to stationary bids). All our theoretical results are
tested against numerical simulations and find excellent confirmation.

2. Definitions

In MGs one considers N agents, labeled usually by Roman indices i = 1, . . . , N . At each
time step t ∈ {0, 1, 2, . . .} of the game each agent i submits a trading action, a ‘bid’ bi(t), in
response to public information µ(t) which in fake history MG versions is chosen randomly
and independently from the set {1, . . . , p} (where p = αN , with α remaining finite whereas
in due course we will take N → ∞). The rescaled total market bid in the game at time t is
subsequently defined as

A(t) = Ae(t) +
1√
N

∑
i

bi(t). (1)

Here Ae(t) could represent, e.g. random market perturbations, actions by market regulators or
other external events (natural, social, political, etc) that can change the overall asset demand
in the market directly. Each agent i has S ‘look-up table’ strategies Ria = (

Ria
1 , . . . , Ria

p

) ∈
{−1, 1}p, with a = 1, . . . , S. If agent i decides to use strategy a at time t in the game, his bid
at that stage will be bi(t) = Ria

µ(t). In the MG an agent i finds himself winning at time t if his
decision bi(t) turns out to be opposite in sign to the total bid, i.e. if bi(t)A(t) < 0. All agents
monitor the performance of their strategies in order to decide which one to use. To this end,
they assign points to each of their strategies based on the update rule

pia(t + 1) = pia(t) − ηRia
µ(t)

[
A(t) − κ√

N

(
R

iai(t)

µ(t) − Ria
µ(t)

)]
, (2)

where η is a learning rate (which sets the unit time scale), and where the first minus sign
implements reward for minority decisions. The term proportional to κ ∈ [0, 1] represents a
(partial) correction by individual agents of A(t) for their own contribution, as in [15]. The
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strategy played by agent i at time t is then ai(t) = arg maxa∈{1,...,S} pia(t). In this paper we
limit ourselves to S = 2, namely two strategies per agent. It is now sufficient for agents to
keep track only of the differences qi(t) = 1

2 [pi1(t) − pi2(t)]. Upon also replacing on the
right-hand side of (2) the random µ(t) at each step t by an average over all possible values (the
so-called batch version of the game), namely RHS[µ(t)] → p−1 ∑

µ�p RHS[µ], and with

η = 2α
√

N 1 one finds

qi(t + 1) = qi(t) + θi(t) − 2√
N

∑
µ�p

ξ
µ

i

(
Aµ(t) − κ√

N
φi(t)ξ

µ

i

)
(3)

Aµ(t) = Ae(t) + �µ +
1√
N

∑
j

φj (t)ξ
µ

j , (4)

with ξ
µ

i = 1
2

(
Ri1

µ − Ri2
µ

)
, ω

µ

i = 1
2

(
Ri1

µ + Ri2
µ

)
,�µ = N−1/2 ∑

i ω
µ

i and φi(t) = sgn[qi(t)].
We have also added a perturbation field θi(t) to define response functions later. Finally we
introduce a spherical constraint into the model, of the type proposed in [14]: we replace the
previous (the so-called batch MG) definition φi(t) = sgn[qi(t)] by

φi(t) = qi(t)/λ(t), λ(t) =
[
N−1

∑
i

qi(t)
2

]1/2

. (5)

The above spherical MG version is a generalization of [14]. It is not unique; the alternative
spherical MG in [13] differs from the present formulation in at what stage and for which
variables the relevant nonlinearities are replaced by pseudo-linear laws.

3. Generating functional analysis

3.1. Derivation of exact order parameter equations

The generating functional analysis (GFA) method is based on the calculation of the generator

Z[ψ] = 〈
exp

[−i
∑

it ψi(t)φi(t)
]〉

, by interchanging the averages 〈· · ·〉 over paths (which
here, in the absence of decision noise, reduce to averaging over initial conditions) and · · · over
the disorder (i.e., the strategies). It has become the standard tool to study MG dynamics, so we
may refer to, e.g., [8] for technical details. For N → ∞ and upon choosing θi(t) = θ(t) for
all i, the method leads to the following self-consistent equations for the two-time correlation-
and response functions Ctt ′ and Gtt ′ , written in terms of averages 〈· · ·〉� over an effective single
agent process:

t �= t ′ : Ctt ′ = 〈φ(t)φ(t ′)〉�, Gtt ′ = ∂〈φ(t)〉�/∂θ(t ′). (6)

A further order parameter λ(t) is to be solved from Ctt = 1, reflecting the spherical constraint,
and causality ensures that Gtt ′ = 0 for all t � t ′. The effective single-agent process is defined
by the following stochastic equation, with φ(t) = q(t)/λ(t):

q(t + 1) = q(t) + θ(t) − α
∑
t ′�t

[(11 + G)−1 − κ 11]t t ′φ(t ′) +
√

αη(t). (7)

Here 11t t ′ = δtt ′ , and η(t) is a zero-average Gaussian noise, characterized by 〈η(t)η(t ′)〉 =
�[Ae]t t ′ ,

�[Ae]t t ′ = [(11 + G)−1D[Ae](11 + G†)−1]t t ′ (8)

1
√

N ensures that the relevant time scales are O(N0); the factor 2α leads to simple equations.
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D[Ae]t t ′ = 1 + Ctt ′ + 2Ae(t)Ae(t
′). (9)

The effective Gaussian noise replaces the statistics of the original N agents by evolution
uncertainty for one effective agent. We can now appreciate the advantages of the spherical
version. The effective equation (7) is linear in φ(t), which allows us to derive fully explicit
dynamical equations for the order parameters, following the steps described in more detail in
e.g. [13, 14]. The only nontrivial step in this derivation is to show via integration by parts that
〈η(t)φ(t ′)〉� = √

α(�[Ae]G†)tt ′ . For θ(t) → 0, the final result is

λ(t + 1)Ct+1,t ′ − [λ(t) + ακ]Ctt ′ = α[(11 + G)−1D[Ae](11 + G†)−1G†]t t ′ − α[(11 + G)−1C]t t ′

(10)

λ(t + 1)Gt+1,t ′ − [λ(t) + ακ]Gtt ′ = δtt ′ − α[(11 + G)−1G]t t ′ . (11)

By solving these equations for the kernels {C,G}, together with the condition Ctt = 1 from
which to extract λ(t), we can explore the dynamics of the original MG model for N → ∞,
since the physical meaning of {C,G} is

Ctt ′ = lim
N→∞

1

N

∑
i

〈φi(t)φi(t ′)〉 (12)

Gtt ′ = lim
N→∞

1

N

∑
i

∂〈φi(t)〉/∂θi(t ′). (13)

The advantages of the spherical MG are that one can derive an exact formula for the volatility
(see below) and that the explicit nature of its order parameter equations allows us to analyze
the effects of the bid perturbations Ae(t) much more effectively than in ordinary MGs.

3.2. Bid average and fluctuations

The statistics of the overall bids Aµ(t) in (4) can once more be extracted from a suitable

generating functional, namely Z[ϕ] = 〈exp[i
√

2
∑

µt ϕµ(t)Aµ(t)]〉. It generates the relevant
moments of the overall bids via differentiation, e.g.,

〈Aµ(t)〉 = − i√
2

lim
ϕ→0

∂Z[ϕ]

∂ϕµ(t)
(14)

〈Aµ(t)Aν(t ′)〉 = −1

2
lim
ϕ→0

∂2Z[ϕ]

∂ϕµ(t)∂ϕν(t ′)
. (15)

Following the familiar steps of the generating functional analysis technique leads us back to
the previous saddle-point problem, but now we obtain an additional expression for the bid
moments. We refer to [8, 10] for full details of such calculations and limit ourselves here to
giving the final result:

〈Aµ(t)〉 =
∑

t ′
(11 + G)−1

t t ′ Ae(t
′) (16)

〈Aµ(t)Aν(t ′)〉 = 〈Aµ(t)〉 〈Aν(t ′)〉 +
1

2
δµν[(11 + G)−1D0[Ae](11 + G†)−1]t t ′ , (17)

where D0[Ae]t t ′ = 1 + Ctt ′ (note that D0[Ae] still depends on Ae(t) via the kernel C). Clearly,
in the presence of finite external bid perturbations the system is no longer guaranteed to evolve
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toward a state with zero-average bid statistics. We can now define a fluctuation volatility by
the following expression:

σ 2
fl = lim

τ→∞
1

τp

∑
t�τ

∑
µ

{〈[Aµ(t)]2〉 − 〈Aµ(t)〉2}

= lim
τ→∞

1

2τ

∑
t�τ

[(11 + G)−1D0[Ae](11 + G†)−1]t t . (18)

Note, however, that in the presence of non-stationary Ae(t), even in the absence of anomalous
response and upon assuming self-averaging with respect to the disorder, it will generally no
longer be true that σfl is identical to the disorder-averaged conventional volatility σ as defined
by

σ 2 = lim
τ→∞

1

τp

∑
t�τ

∑
µ

[Aµ(t)]2 −
[

lim
τ→∞

1

τp

∑
t�τ

∑
µ

Aµ(t)

]2

. (19)

The difference between σ and σfl reflects bid oscillations which are deterministic and therefore
excluded from σfl. We will derive an exact relation between the two later.

4. Time translation invariance with constant or oscillating external bids

In the remainder of this paper we focus on the choices Ae(t) = Ã and Ae(t) = Ã(−1)t , where
the asymptotic consequences of bid perturbation are most easily quantified. Experience with
previous MG versions suggests that there will be two types of players in the stationary state:
‘frozen’ agents, with qi(t) growing linearly with time, and ‘fickle’ agents, where qi(t) does
not diverge with time. In view of this, we consider two types of solutions with respect to
the spherical constraint parameter λ(t): a regime where limt→∞ λ(t) = λ (finite) and another
regime where λ(t) → ∞ as t → ∞.

4.1. General formulae

For Ae(t) = Ã(−1)ζ t with ζ ∈ {0, 1} our equations (10) and (11) will have time-translation
invariant (TTI) solutions, since here (9) gives D[Ae]t t ′ = 1 + Ctt ′ + 2Ã2(−1)ζ(t−t ′). Upon
assuming Ctt ′ = C(t − t ′) and Gtt ′ = G(t − t ′), so that the same is true for D[Ae] and �[Ae],
our equations (10) and (11) then reduce for finite values of t to

C(t + 1) − ψ0C(t) = αψ1{[(11 + G)−1D[Ae](11 + G†)−1G†](t) − [(11 + G)−1C](t)} (20)

G(t + 1) − ψ0G(t) = ψ1{δt0 − α[(11 + G)−1G](t)} (21)

with

ψ0 = lim
t→∞[λ(t − 1) + ακ]/λ(t), ψ1 = lim

t→∞ 1/λ(t). (22)

If λ(t) → λ for t → ∞ one has ψ0 = (λ + ακ)/λ and ψ1 = 1/λ, whereas if λ(t) → ∞
one has ψ0 = 1 and ψ1 = 0 (note: since strategy valuations can diverge at most linearly with
time, the same must be true for λ(t) so limt→∞ λ(t − 1)/λ(t) < 1 is ruled out). There is,
however, an important subtlety. It is not clear that in the case of diverging λ(t) one can use
equations (20) and (21) to calculate observables such as χ or χ̂ , as this requires that the limits
τ → ∞ in χ = ∑

t�τ G(t) and t → ∞ in (22) commute. If they do not commute (as
will be the case), this means that the time it takes to evolve from initialization to a state with
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(ψ0, ψ1) = (1, 0) diverges, so such states will in practice not be observed. Equations (20) and
(21) invite us to switch to Fourier transforms,

C(t) =
∫ π

−π

dω

2π
eiωt Ĉ(ω), Ĉ(ω) =

∞∑
t=−∞

e−iωtC(t). (23)

The Fourier transform of the kernel (9), in particular, is seen to be

D̂[Ae](ω) = 2πδ(ω) + Ĉ(ω) + 4πÃ2δ(ω − ζπ). (24)

One expects the relevant static observables to include the integrated responses to static and
oscillatory fields, namely χ = ∑

t G(t) = Ĝ(0) and χ̂ = ∑
t (−1)tG(t) = Ĝ(π). With these

definitions we can write (20) and (21) as

Ĉ(ω)[|1 + Ĝ(ω)|2(eiω − ψ0) + αψ1[1 + Ĝ(−ω) − Ĝ(ω)]]

= 2παψ1Ĝ(ω)[δ(ω) + 2Ã2δ(ω − ζπ)] (25)

(eiω − ψ0)Ĝ(ω) = ψ1[1 − αĜ(ω)/[1 + Ĝ(ω)]]. (26)

We must also enforce the spherical constraint C(0) = 1, which gives
∫

dωĈ(ω) = 2π . The
right-hand side of (25) dictates that the solution must be of the following form, where we have
built in the spherical constraint, with c0 ∈ [0, 1]:

Ĉ(ω) = 2π [c0δ(ω) + (1 − c0)δ(ω − π)]. (27)

Equations (25) and (26) then reduce to the following set:

c0[αψ1 + (1 + χ)2(1 − ψ0)] = αψ1χ [1 + 2Ã2δζ0] (28)

(1 − c0)[αψ1 − (1 + χ̂ )2(1 + ψ0)] = 2αψ1χ̂ Ã2δζ1 (29)

(1 − ψ0)χ(1 + χ) = ψ1(1 + χ − αχ) (30)

−(1 + ψ0)χ̂(1 + χ̂ ) = ψ1(1 + χ̂ − αχ̂). (31)

We can next work out the bid statistics in TTI states. Here formulae (16) and (18) are seen
to give the following, which show (as expected) that the effects of stationary or oscillatory
external bid perturbations are generally reflected in the bid averages:

lim
τ→∞

1

τ

∑
t�τ

〈Aµ(t)〉 = Ãδζ0

1 + χ
, lim

τ→∞
1

τ

∑
t�τ

(−1)t 〈Aµ(t)〉 = Ãδζ1

1 + χ̂
(32)

σ 2
fl = 1 + c0

2(1 + χ)2
+

1 − c0

2(1 + χ̂)2
. (33)

4.2. Solution with diverging constraining force: fully frozen states

In states where λ(t) → ∞ for t → ∞ one has (ψ0, ψ1) = (1, 0), so equations (20) and
(21) reduce to C(t) = 1 and G(t) = 0 for all t, indicating a fully frozen microscopic state
with c0 = 1. The simplest potential solution of our remaining equations is that where we
subsequently assume the time limits in the definition of {χ, χ̂} to commute with those in (22).
It then follows from (28) to (31) that χ = χ̂ = 0, and the volatility (33) would become
σ 2

fl = 1. Unfortunately, the relevant limits do not commute, which follow from a more careful
analysis of the effective single-agent process. Although still c0 = 1, the calculation of χ

and χ̂ has to be done explicitly. Upon defining Q = limt→∞ q(t)/t,� = limt→∞ λ(t)/t,

6
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η = limt→∞ t−1 ∑
t ′�t η(t ′) and θ = limt→∞ t−1 ∑

t ′�t θ(t ′), and upon writing (7) in
integrated form, one finds

Q = θ +
√

αη

1 + (α/�)[(1 + χ)−1 − κ]
. (34)

This gives Q(η), where η is a zero-average Gaussian random variable with 〈η2〉� =
limt→∞ t−1 ∑

ss ′�t 〈η(s)η(s ′)〉 = (1 + c0 + 2Ã2δζ0)/(1 + χ)2 = 2(1 + Ã2δζ0)/(1 + χ)2.

The susceptibility now follows from χ = �−1∂〈Q(η)〉�/∂θ = [�
√

α]−1〈∂Q(η)/∂η〉�,
and � follows from the spherical constraint limt→∞〈φ2(t)〉� = 1, which translates into
〈Q2(η)〉� = �2. So we find the following two coupled equations, respectively,

χ = 1

�[1 + (α/�)[(1 + χ)−1 − κ]]
(35)

� =
√

2α(1 + Ã2δζ0)

(1 + χ)[1 + (α/�)[(1 + χ)−1 − κ]]
. (36)

To calculate χ̂ we require an infinitesimal oscillating field θ(t) = (−1)t θ̃ and use

χ̂ = lim
θ̃→0

∂

∂θ̃
lim

τ→∞
1

τ

∑
t�τ

(−1)t 〈q(t)

λ(t)
〉� = 0 (37)

by virtue of q(t)/λ(t) → Q(η)/� as t → ∞. Solving the above equations for χ and λ and
substituting the result into (33) gives

χ = 1√
2α(1 + Ã2δζ0) − 1

(38)

� = −1 − α(1 − κ) +
√

α(3 + 2Ã2δζ0)/

√
2(1 + Ã2δζ0) (39)

σ 2
fl = (

1 − 1
/√

2α(1 + Ã2δζ0)
)2

. (40)

Ergodicity breaks down when χ → ∞, i.e. at αc,1(Ã) = 1
2 (1 + Ã2δζ0)

−1. Secondly, we see
that the above solution breaks down when λ(t) no longer diverges with time, which happens
when [1 + α(1 − κ)]2 = 1

2α(3 + 2Ã2δζ0)
2/(1 + Ã2δζ0), i.e. at

αc,±(Ã, κ) = R − 2(1 − κ) ±
√

R2 − 4(1 − κ)R

2(1 − κ)2
, R = (3 + 2Ã2δζ0)

2

2 + 2Ã2δζ0
. (41)

The solution αc,− is unphysical as it obeys αc,− � αc,1, which implies that it occurs in the
non-ergodic regime where the above formulae are no longer valid. The solution αc,+ is relevant
as it obeys αc,+ � αc,1. Thus, the regime of diverging λ(t) is bounded on the left (as a function
of α) by a non-ergodicity transition at α = αc,1(Ã) and on the right by a transition to states
with finite λ(t) at α = αc,+(Ã, κ). The transition value αc,+(Ã, κ) increases monotonically
with increasing κ; it is minimal at κ = 0, taking the value αc,+(Ã, 0) = 1

2 [R−2+
√

R2 − 4R],
and diverges at κ = 1.

4.3. Solutions with finite constraining force

In the alternative scenario limt→∞ λ(t) = λ ∈ R, we substitute into (28)–(31) the values
ψ0 = (λ + ακ)/λ and ψ1 = 1/λ. If we also write λ as λ = 1

2α(γ − κ), to simplify our
equations further, we find

7
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c0 = χ + 2χÃ2δζ0

1 − κ(1 + χ)2
, 1 − c0 = 2χ̂ Ã2δζ1

1 − γ (1 + χ̂ )2
(42)

ακχ2 + χ [1 + α(κ − 1)] + 1 = 0 (43)

αγ χ̂2 + χ̂ [1 + α(γ − 1)] + 1 = 0. (44)

Solving the last two equations for χ and χ̂ gives two possibilities for each:

χ± = α(1 − κ) − 1 ±
√

[α(1 − κ) − 1]2 − 4ακ

2ακ
(45)

χ̂± = α(1 − γ ) − 1 ±
√

[α(1 − γ ) − 1]2 − 4αγ

2αγ
. (46)

It follows from the demand χ ∈ R that solutions with a finite constraining force exist only if
[α(1 − κ) − 1]2 − 4ακ � 0, that is, only if

α � α̃c,− = 1

(1 +
√

κ)2
or α � α̃c,+ = 1

(1 − √
κ)2

. (47)

Furthermore, upon investigating the limit κ → 0 (no impact correction) in (45) we find
limκ→0 χ− = 1/(α − 1) and limκ→0 χ+ = ∞, so the physical solution must be χ−:

χ = α(1 − κ) − 1 −
√

[α(1 − κ) − 1]2 − 4ακ

2ακ
, (48)

which is finite for all κ > 0 and positive for α > 1/(1 − κ). To find the static-order parameter
c0 we need only combine (48) with the first equation of (42). The remaining two equations,
namely (46) and the second equation of (48), serve only to determine the quantities χ̂ and γ .
Substituting (48) into (42) gives

c0 = 2α(1 + 2Ã2δζ0)[α(1 − κ) − 1 −
√

[α(1 − κ) − 1]2 − 4ακ]

4α2κ − [α(1 + κ) − 1 −
√

[α(1 − κ) − 1]2 − 4ακ]2
. (49)

We extract from this that c0 = −α − α2(1 + 2κ) + O(α3) for small α and that c0 ↓ −∞
for α ↑ α̃c,−. Hence the solutions (48) and (49) are unphysical in the regime α ∈ [0, α̃c,−].
This leaves the regime α > α̃c,+. Here we are sure that χ > 0 (since 1/(1 − κ) < α̃c,+),
and we find c0 = 1/α(1 − κ) + 2κ/α2(1 − κ)2 + O(α−3) for α → ∞ and that c0 ↑ ∞ for
α ↓ α̃c,+. Hence the solutions (48) and (49) are physical in the regime α ∈ [α̃c,2,∞), where
α̃c,2(Ae, κ) � 1/(1 − √

κ)2 is defined by the condition c0 = 1. This last critical line is most
easily derived indirectly, by first using (42) to write it as a condition on χ , giving

χc,2 =
√

(1 + 2Ã2δζ0)2 + 8κ(1 + Ã2δζ0) − 1 − 2Ã2δζ0

2κ
− 1. (50)

This is then inserted into (43) and the result is easily solved for α, giving

α̃c,2(Ae, κ) = 2(� − 1 − 2Ã2δζ0)

(� − 1 − 2Ã2δζ0 − 2κ)(3 + 2Ã2δζ0 − �)
(51)

� =
√

(1 + 2Ã2δζ0)2 + 8κ(1 + Ã2δζ0). (52)

After (tedious) reworking of this result, using the definitions of � and R and the identity
� = [2(1 + Ã2δζ0)(R − 4(1 − κ))]1/2 to connect the various shorthands, one finds that this
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critical line (51) marking c0 = 1 with finite λ(t) is identical to the previous critical line (41).
For Ã = 0 we recover the corresponding formula of [14]:

α̃c,2(0, κ) = 4κ + 5 + 3
√

1 + 8κ

4(1 − κ)2
. (53)

Let us finally turn to the susceptibility χ̂ , which we need to calculate the volatility (33), and
which is to be solved together with γ from (44) and the second equation in (42). One finds
upon eliminating γ that

χ̂± = −1

1 ±
√

α[1 + 2Ã2δζ1/(1 − c0)]
. (54)

Since the present solution regime always has α > 1, we see that the two distinct solutions
χ̂± represent in-phase and out-of-phase responses of the market to the oscillating external bid
input, and that neither will be able to diverge. The volatility (33) now follows upon substituting
the result (54), together with (48) and (49).

5. Phase diagrams

We can now summarize the picture obtained by analyzing the time-translation invariant states
in terms of a phase diagram, where the control parameters are α, κ and Ã. The three phases
of the system are the following:

α ∈ (αc,2,∞) : oscillating phase(O), c0 < 1, χ < ∞, χ̂ �= 0, λ(t) < ∞
α ∈ (αc,1, αc,2) : frozen phase(F), c0 = 1, χ < ∞, χ̂ = 0, λ(t) → ∞
α ∈ [0, αc,1) : anomalous phase(A), c0 = 1, χ = ∞.

The precise dependence of the transition lines αc,1 and αc,2 on the two remaining control
parameters (Ã, κ) is furthermore controlled strongly by whether the external bid perturbation
is static (ζ = 0) or oscillatory (ζ = 1). In the former case one finds

αc,1(Ã) = 1

2
(1 + Ã2)−1 (55)

αc,2(Ã, κ) = R(Ã) − 2(1 − κ) +
√

R2(Ã) − 4(1 − κ)R(Ã)

2(1 − κ)2
, R(a) = (3 + 2a2)2

2 + 2a2
. (56)

Here the frozen (F) phase will consistently grow with increasing values of Ã, due to both
its left boundary αc,1(Ã) decreasing with Ã and its right boundary αc,2(Ã, κ) increasing with
Ã. This is easily understood: a static external bid perturbation diminishes the impact of the
internal bid contributed by the agents and makes it easier for the agents to find a suitable
strategy that will land them in the minority group. At κ = 0 (no self-impact correction)
the transition point αc,2 simplifies to αc,2(Ã, 0) = 2(1 + Ã2) = 1/αc,1(Ã). For oscillatory
perturbations Ae(t) = Ã(−1)t , in contrast, the situation is very different: here the relevant
transition lines are strictly independent of the amplitude Ã, and are obtained by evaluating the
above formulae at αc,1(0) and αc,2(0, κ), namely

αc,1 = 1

2
, αc,2(κ) = 5 + 4κ + 3

√
1 + 8κ

4(1 − κ)2
. (57)

However, although in the case of oscillatory perturbation the phase diagram is independent of
Ã, in the oscillating (O) phase there will be a significant dependence on Ã of the volatility.
In all cases we find that the effect of self-impact correction is to strengthen the frozen (F)
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Figure 1. Phase diagrams for static external bid perturbations, Ae(t) = Ã, exhibiting an oscillating
phase (O), a frozen phase (F) and an anomalous phase (A). The latter is characterized by χ = ∞.
Dashed lines: the F → A transition αc,1. Solid lines: the F → O transition αc,2. Left diagram:
transitions in the (α, κ) plane. Here we show the lines for Ã = 0, 1, 2, 3, 4 (left to right in the
case of F → O, right to left in the case of F → A). Right diagram: transitions in the (α, Ã) plane
for κ = 0 (no self-impact correction), where αc,2(Ã, 0) = 1/αc,1(Ã). For static external bid
perturbation, increasing Ã always increases the F phase.
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Figure 2. Phase diagrams for oscillating external bid perturbations, Ae(t) = Ã(−1)t , with the same
definitions of phases and transitions as in the previous figures. For oscillating bid perturbations
the phase diagram is independent of the perturbation amplitude Ã.

phase, with the oscillating phase vanishing altogether for full impact correction (i.e. for
κ = 1).

It follows from expressions (32) that throughout the phases F and O the system is not able
to compensate fully for stationary external bid perturbations; since χ is finite, the average bid
will be nonzero for any nonzero perturbation amplitude Ã. Only at the transition line αc,1(Ã),
where non-ergodicity sets in and χ diverges, does the bid average vanish. This is the situation
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Figure 3. Macroscopic observables for static external bid contributions Ae(t) = Ã. Top row:
frozen correlations c0 for κ = 0 (left), κ = 0.25 (middle) and κ = 0.5 (right); with in each picture
the values as measured for Ã ∈ {0, 2, 4}. Bottom row: volatility σ for κ = 0 (left), κ = 0.25
(middle) and κ = 0.5 (right); with in each picture the values as measured for Ã ∈ {0, 2, 4}. In
all figures the connected markers indicate simulation results (full circles: biased initial conditions;
open circles: unbiased initial conditions), with solid lines showing the corresponding theoretical
predictions. The vertical dashed lines mark the transition values αc,1(Ã) (left, transition from the
non-ergodic regime with finite spherical constraint force regime for small α to the frozen regime)
and αc,2(Ã, κ) (right, transition from the frozen regime with infinite spherical constraint force to
the large α ergodic regime with finite spherical constraint force).

that was also encountered in ordinary MGs [10]. In our present spherical MG, however, we are
also able to inspect the impact of oscillating external bid perturbations, and find that with such
perturbations the situation is worse: since χ̂ remains finite everywhere, we will always retain
an oscillating (and predictable) nonzero overall bid average, even if we enter the non-ergodic
regime.

6. Tests against numerical simulations

In this section we test our predictions regarding the values of the long-time order parameters and
the locations of phase transition lines, for stationary and oscillating external bid contributions,
respectively, against numerical simulations. All simulations were carried out with systems
of size N = 3000, for both unbiased (qi(0) = ±10−4) and biased (qi(0) = ±1) random
initializations. Observables were always measured over a duration of 2000 batch iterations,
following an equilibration stage of 1000 batch iterations. When comparing theoretical
predictions to simulation measurements it became immediately clear that of the two possible
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Figure 4. Macroscopic observables for oscillating external bid contributions Ae(t) = Ã(−1)t . Top
row: frozen correlations c0 for κ = 0 (left), κ = 0.25 (middle) and κ = 0.5 (right); with in each
picture the values as measured for Ã ∈ {0, 2, 4}. Bottom row: volatility σ for κ = 0 (left), κ = 0.25
(middle) and κ = 0.5 (right); with in each picture the values as measured for Ã ∈ {0, 2, 4}. Note
the different vertical volatility scales compared to the previous figure. In all figures the connected
markers indicate simulation results (full circles: biased initial conditions; open circles: unbiased
initial conditions), with thick solid lines showing the corresponding theoretical predictions. The
vertical dashed lines mark the transition values αc,1 = 1

2 (left, transition from the non-ergodic
regime with finite spherical constraint force regime for small α to the frozen regime) and αc,2(κ)

(right, transition from the frozen regime with infinite spherical constraint force to the large α

ergodic regime with finite spherical constraint force).

saddle-points in (54) the physical one is χ̂+, the in-phase solution with high volatility;
henceforth, all theoretical predictions will correspond to this saddle point.

The volatility σ that is measured in simulations is the conventional one given in (19), for
which we still have to derive an analytical expression. Upon combining definition (18) of
σfl, for which we have derived prediction (33), with (19) (following any given initial state, so
that the brackets 〈· · ·〉 are irrelevant, and assuming self-averaging of both volatilities over the
disorder realization for N → ∞) we see that

σ 2 = σ 2
fl + lim

τ,p→∞

{
1

τp

∑
t�τ

∑
µ

Aµ(t)
2 − 1

τ 2p2

∑
t t ′�τ

∑
µν

Aµ(t)Aν(t ′)
}

= σ 2
fl + lim

τ→∞

{
1

τ

∑
t�τ

[∑
t ′

(11 + G)−1
t t ′ Ae(t

′)
]2

−
[

1

τ

∑
t�τ

∑
t ′

(11 + G)−1
t t ′ Ae(t

′)
]2}

. (58)
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Figure 5. Examples of measured values (connected markers) versus predicted values (thick solid
lines) of the spherical constraint force λ, as measured for Ã ∈ {0, 2, 4} with κ = 0. The vertical
dashed lines mark the transition values αc,1 (left, transition from the non-ergodic regime with finite
spherical constraint force regime for small α to the frozen regime) and αc,2 (right, transition from
the frozen regime with infinite spherical constraint force to the large α ergodic regime with finite
spherical constraint force). The force λ is indeed seen to diverge at the predicted values of α.

In time-translation invariant stationary states with Ae(t) ∈ {Ã, Ã(−1)t } this becomes

σ 2 = σ 2
fl +

∑
ss ′

(11 + G)−1(s)(11 + G)−1(s ′)

× lim
τ→∞

{
1

τ

∑
t�τ

Ae(t − s)Ae(t − s ′) − 1

τ 2

∑
t t ′�τ

Ae(t − s)Ae(t
′ − s ′)

}

= σ 2
fl +

{
Ã2/(1 + χ̂)2 if Ae(t) = Ã(−1)t

0 if Ae(t) = Ã.
(59)

The results are shown in figures 3–5. One observes excellent agreement between theory and
numerical experiments, both in terms of the values of the observables and the locations of
the O → F and F → A transitions. In particular, we find confirmation of the somewhat
surprising prediction that, although in terms of market stability the oscillating external bid
term is a disaster for the market (the market always responds in-phase to the oscillation,
i.e. making the deviations from market efficiency consistently worse), the locations of the
phase transition lines remain always identical to what they were in the absence of oscillatory
external disruption (i.e., for Ã = 0). The effects of impact correction are relatively minor,
limited to enlarging the frozen phase F, to dampening the fluctuations, and to reducing the
non-ergodicity effects in the anomalous phase A. These non-ergodic effects take the form of
a dependence of the macroscopic observables on the degree of bias in the initial state, i.e. on
λ(0) = [

N−1 ∑
i q

2
i (0)

]1/2
.

7. Discussion

In this paper we have analytically studied the response of spherical minority games (MG)
to external time-dependent market disruption of the overall market bid, which is envisaged
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to model the effects of either market regulators or other socio-political or natural events
outside the market that impact directly on the asset demand and hence the asset price. The
advantages of the spherical formulation of the game are that one can derive fully explicit (and
exact) macroscopic dynamical equations and work out the market’s response rigorously and
effectively, even if one includes self-impact correction (where agents correct their actions for
their own impact on the market), and that the volatility can be calculated exactly. We have
specifically focused on evaluating and comparing the long-time consequences of two types
of external bid terms: stationary ones, Ae(t) = Ã, and oscillating ones, Ae(t) = Ã(−1)t .
These two cases give rise to different phase diagrams and different behavior of the market
volatility. The presence of an oscillating external bid term is disastrous for the efficiency
of the market: the market’s response is always to oscillate in phase with the perturbation,
making the situation worse and increasing significantly the volatility. Yet, rather surprisingly,
the phase diagram in this case is not at all affected by the imposed external bid oscillation. All
this is more or less the opposite of how the market responds to stationary external bid terms,
where the phase diagram is strongly affected by the amplitude of the bid perturbation, but the
fluctuations remain largely unaffected. All theoretical predictions have been tested against
numerical simulations and found to be supported perfectly well. We should emphasize that the
simple choices Ae(t) = Ã and Ae(t) = Ã(−1)t are not quite realistic economically. However,
they represent a first step away from isolated MG models, and they can at least be analyzed
in full. More interesting choices would be, e.g. time-dependent bid contributions Ae(t) of
a regulatory origin, that would depend explicitly on the market history. This would not be
tractable within the present setup, but would require the much more demanding tools of papers
like [11, 12], and would be an interesting future project. Our present study emphasizes the
need for further development of those versions of the generating functional analysis formalism
that include the stochastic overall bid dynamics explicitly, as in [11, 12], so that one can also
tackle the MG market’s response to events in its environment for non-spherical (i.e., more
realistic) versions, where the route to explicit macroscopic equations that proved fruitful in
this paper is no longer available.
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